Methodology for Automated Design of Quantum-Dot Cellular Automata Circuits
نویسندگان
چکیده
Quantum-dot Cellular Automata (QCA) provide very high scale integration potential, switching frequency, and have extremely low power demands, which make the QCA technology quite attractive for design implementation of large-scale, high-performance nanoelectronic circuits. However, state-of-the-art circuit designs were not derived by following a set universal rules, as is case CMOS circuits, and, result, it either impossible or difficult to combine blocks in effective large-scale In this paper, we introduce novel automated methodology, builds upon specific rules set. The proposed methodology assumes availability generic crossbar architecture provides means customize order implement any given logic function. programming principles flow tool circuits are described analytically apply method both combinatorial sequential obtained demonstrate that functional, easy use, desired unification.
منابع مشابه
Design of Optimized Quantum-dot Cellular Automata RS Flip Flops
Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard to implement Very Large Scale Integrated (VLSI) devices for the last two decades. Due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. Quantum-dot c...
متن کاملGeneric parity generators design using LTEx methodology: A quantum-dot cellular automata based approach
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملGeneric parity generators design using LTEx methodology: A quantum-dot cellular automata based approach
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE open journal of nanotechnology
سال: 2022
ISSN: ['2644-1292']
DOI: https://doi.org/10.1109/ojnano.2022.3223413